Step of Proof: l_before_sublist
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
l
before
sublist
:
T
:Type,
L1
,
L2
:(
T
List).
L1
L2
{
x
,
y
:
T
.
x
before
y
L1
x
before
y
L2
}
latex
by ((((Unfolds ``l_before guard`` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (Using [`L2',
L1
] Easy))
latex
C
.
Definitions
t
T
,
x
before
y
l
,
{
T
}
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
sublist
wf
,
sublist
transitivity
origin